Sensitive, Reproducible and Simultaneous Bioanalytical method of Isosorbide Dinitrate and its metabolites Isosorbide 2-mononitrate and Isosorbide 5-mononitrate in human matrix samples for Pharmacokinetics analysis

Ms. Swati Guttikar*, Mr. Jayrajsinh Chudasama, Mr. Vipul Chauhan Veeda Clinical Research Ltd.

Purpose:

alidate the reliable method for simultaneous determination o SDN) and its metabolites Isosorbide 2-mononitrate (2-ISMN) ononitrate (5-ISMN) in Human plasma Samples by using electrospray ionization tandem mass spectrometry method was developed and validated using 0.7mL of ver the calibration range of 0.4ng/mL to 100ng/mL for ISDN and 500.000 ng/mL for both 2-ISMN and 5-ISMN to generate data as a component of bioequivalence studies for generic Isosorbide dinitrate formulations

Background:

psorbide dinitrate is a nitrate that dilates (widens) blood vessels, making flow through them and easier for the heart to pump. is used to treat or prevent attacks of chest pain (angina) in coronary artery disease. After administration of ISDN tablets orally, ISDN is metabolized by enzymatic denitration followed by formation of glucuronide. The primary initial metabolites, Isosorbide 2-mononitrate generally referred 2-ISMN and Isosorbide 5-mononitrate referred as 5-ISMN are presumed to be responsible, at least in part, for the therapeutic efficacy of ISDN.

A liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) method was developed for simultaneous quantitation of Isosorbide dinitrate (ISDN) and its metabolites Isosorbide 2-mononitrate (2-ISMN) and Isosorbide 5-mononitrate (5-ISMN) in human plasma samples. Liquid-liquid extraction method allowed the selective extraction of ISDN, 2-ISMN and 5-ISMN from plasma. The measurement of 2-ISMN and 5-ISMN requires chromatographic separation of both isomers which were separated by using C18 stationary phase followed by gradient elution. ISDN, 2-ISMN and 5-ISMN were monitored simultaneously using negative ion acetate-adduct multiple reaction monitoring (MRM) mode transitions by mass spectrometric detection. ISDN and 13C6ISDN eluted at about 13.0 min while 2-ISMN and 13C6 2-ISMN eluted at about 6.0 min and 5-ISMN and 13C6 5-ISMN eluted at about 7.50 min with the total run time of 16.0 min. For the quantitation, individual calibration curves were used for all the three analytes. The calibration curves were found linear over the range of 0.4 ng/mL to 100 ng/mL for ISDN and 2.000 ng/mL to 500.000 ng/mL for both 2-ISMN and 5-ISMN. The method was found sensitive with LOQs of 0.400 ng/mL for ISDN and 2.000 ng/mL for both 2-ISMN and 5-ISMN.

Key Features of the Research Work:

The analytical method developed in past for the determination of Isosorbide dinitrate and its two isomeric metabolites has used capillary gas chromatography with electron capture detection technique to give LOQ 2.5ng/mL for ISDN, 2.6ng/mL for 2-ISMN and 2.3ng/mLfor 5-ISMN.However, no LC-MSMS method has been developed for the simultaneous determination of Isosorbide dinitrate and its two isomeric metabolites. The method described here is more sensitive that produce LOQ concentration 0.4ng/mL for ISDN and 2.0ng/mL for 2-ISMN & 5-ISMN. A few publications have reported simultaneous estimation of ISDN and 5-ISMN while some of the publications have reported estimation of 5-ISMN alone in human plasma by LC-MS/MS, however no one has reported simultaneous LC-MSMS method for the estimation of Isosorbide dinitrate and its mononitrate metabolites. Patel et al have reported simultaneous estimation of 2-ISMN and

5-ISMN in rat and human plasma using LC-MS/MS employing chiral chromatography The usage of SPE cartridges and chiral column attributes the method cost According to USFDA guidance estimation of Isosorbide dinitrate and both metabolites (2-ISMN and 5-ISMN) are required in plasma samples, Hence, we have developed the simple, selective, sensitive and cost effective bioanalytical method for the estimation of ISDN and both the metabolites in human plasma sample The Various method attributes aligning with the major regulatory guidelines were evaluated during method validation activity. This method was successfully employed for the analysis of ISDN, 2-ISMN and 5-ISMN in plasma samples collected during a human pharmacokinetic study from healthy subjects who received single oral dose of Isosorbide dinitrate 30 mg tablet as either Test or Reference treatmen

Sample Preparation ISDN, **2-ISMN & 5-ISMN:**

Calibration curve standards. Quality control samples and unknown samples (0.700mL Plasma Samples) were transferred in a vial for sample preparation. 0.050 mL of mixed ISTD dilution was added to all samples except Blank samples. 0.300 mL of Formic acid in water (0.5% v/v) was added in all samples and mixed properly. Ethyl acetate solvent was added to all samples for extraction. Samples were extracted on rotospin for 25 minutes at 50 rpm. Samples were centrifuged at 5°C for 25 minutes at 4000 rpm. Organic layer phase was transferred from samples and dried under nitrogen gas. 0.100 mL of Reconstitution solution (1mM Ammonium Acetate in water: Methanol, 50:50 V/V) was added to all samples and mixed. The final samples were arranged in an auto-sampler and acquired by applying pre-defined equipment parameters for LC/MS/MS.

Method Summary ISDN, 2-ISMN & 5-ISMN:

		2-ISMN and 5-ISMN we	re achieved on Gemini	C18 (150 × 4.6 mm, 5 µr	n) column using wat
Analytical Technique	Liquid chromatography coupled with mass spectroscopy	methanol as mobile pl ammonium acetate was	s continuously infused	for adduct formation.	
MS/MS	Triple QUAD 5500 - Sciex	Details of the gradient Methanol (Pump B)	orogramme are as follo	ows: Milli-Q water (Pump	o A):
Auto-sampler	UFLC XR Prominence - Shimadzu				
Software used	Analyst software version No 1.6.3 (for analysis) and WATSON LIMS 7.3 for final regression	Time (min)	Module	Events	Darameter (% P)
lon source	Turbo Ion Spray	Time (min)	Module	Events	Parameter (%B)
Scan Type	Multiple Reaction Monitoring	8.50	Pumps	Pump B conc.	10
Column type	Gemini C18 5µm 110, 150*4.6mm	9.00	Pumps	Pump B conc.	50
Mobile Phase	Milli-Q water (Pump A): Methanol (Pump B); 1mM ammonium acetate in Methanol (Pump C)	12 50	Dumme	Duman Di sama	50
Flow Rate	1.0 mL/min	13.50	Pumps	Pump B conc.	50
Biological Matrix	Human Plasma	13.60	Pumps	Pump B conc.	95
Internal Standard	Isosorbide 13 C6, Isosorbide 13C6 2-mononitrate and Isosorbide -13C6 5-Mononitrate	15.50	Pumps	Pump B conc.	95
Quantification	Area Ratio	15.60	Pumps	Pump B conc.	10
Regression & Equation	Linear, y = ax + b	13.00	i unps		10
Weighting Factor	1/X ²	16.00	System Controller	Sto	р

	ISDN	2-ISMN	5-ISMN	Stability Experiment Details ISDN, 2-ISMN & 5-ISMN:		
Sample Processing Volume		0.700ml		Parameters	ISDN , 2-ISMN and 5-ISMN	
Linearity Range (ng/mL)	0.400 - 100.000	2.000 – 500.000	2.000 – 500.000	Stability of Extract (SE) at Ambient Temperature	43 Hours at Ambient Temperature in Reconstitution solution (1mM Ammonium Acetate in water: Methanol, 50:50 V/V)	
Validated LLOQ (ng/mL)	0.400	2.000	2.000	Stability of Extract (SE) in Refrigerator	210 Hours at 5±3°C in Reconstitution solution (1mM Ammonium Acetate in water : Methanol, 50:50 V/V)	
Validated LLOQ QC (ng/mL)	0.400	2.000	2.000	Dry Extract stability	161 Hours at -20±5°C	
Validated LQC (ng/mL)	1.200	6.000	6.000	Freeze Thaw (FT)	V Cycles at -20±5°C and -78±8°C	
Validated MQC (ng/mL)	30.000	150.000	150.000	Fleeze fildw (FT)	V Cycles at -2015 C and -7818 C	
Validated HQC (ng/mL)	75.000	375.000	375.000	Bench Top (BT)	13 Hours at wet ice bath at below 10°C, Protected from normal light	
Validated AUL QC (ng/mL)	500.000	2500.000	2500.000	Auto-sampler Re-Injection Reproducibility	214 Hours at 5±3°C in Reconstitution solution (1mM Ammonium Acetate in water: Methanol, 50:50 V/V)	
Validated ULOQ (ng/mL)	100.000	500.000	500.000	Long Term Stability of Drug in Matrix (LTM)	93 Days at -20±5°C and -78±8°C	
				Batch Size Experiment	Total samples 155 including Calibration Curve	
Chromatographic System and			nd	Dilution Integrity (DI)	10 fold DQC, 500.000 ng/mL for ISDN and 2500.000 ng/mL for 2- ISMN and 5-ISMN (Dilution medium used - human Plasma)	

MS/MS Condition

Experiments were conducted on Shimadzu LC-20 AD XR system (Shimadzu Corp, Japan) coupled with TQ 5500 triple quadrupole mass spectrometric detector (AB Sciex, USA) equipped with an electrospray ionization source. Chromatographic separations of ISDN, 2-ISMN and 5-ISMN were achieved on Gemini C18 (150 x 4.6 mm, 5 µm) column using water

Parameters	ISDN , 2-ISMN and 5-ISMN
Selectivity	< 3.0% interference in blank samples processed from different human plasma lots at the retention time of each analyte
Overall % Recovery	69.62%, 55.17% and 69.02%
rix effect by evaluation matrix factor	% CV of IS Normalized factor at HQC & LQC (1.89 & 2.82),(1.89 & 1.69), (1.92 & 1.53)
Cross selectivity(Impact analysis)	Significant interference was not observed in presence of another simultaneously analysed analyte(s)

Matr

Intra – Inter Precision & Accuracy ISDN, 2-ISMN & 5-ISMN:

ISDN

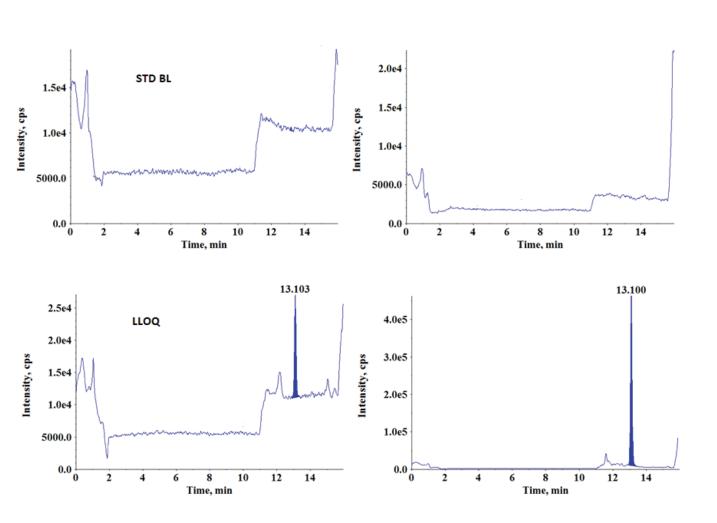
Intra batch precision ar (Accuracy) (HQC, MQC)

> Intra batch precision Bias (Accuracy) (LLO

Inter batch precision an (Accuracy) (HQC, MQC of

Inter batch precision Bias (Accuracy) (LLO

Validation Experiments:

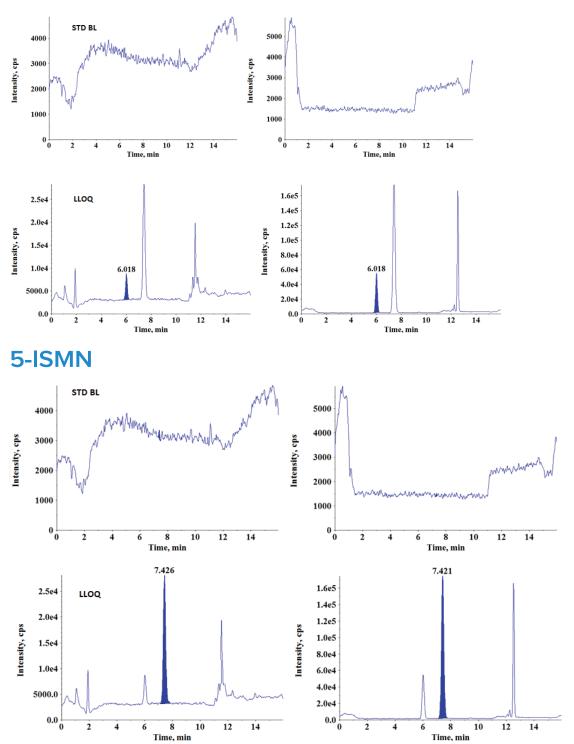

	Precision			% Bias		
	RUN 1	RUN 2	RUN 3	RUN 1	RUN 2	RUN 3
nd % Bias and LQC)	0.47 to 1.07	0.73 to 3.15	1.57 to 3.18	-0.27 to 1.31	-2.08 to 3.33	2.25 to 5.21
and % Q QC)	5.25	3.89	9.13	0.00	9.25	15.00
nd % Bias and LQC)	< 3.07			0.42 to 3.28		
and % DQ QC)	8.56			8.00		

	Precision			% Bias		
2-ISMN	RUN 1	RUN 2	RUN 3	RUN 1	RUN 2	RUN 3
Intra batch precision and % Bias (Accuracy) (HQC, MQC and LQC)	0.44 to 1.38	0.47 to 5.49	0.47 to 5.49	-2.20 to 2.33	-8.85 to 4.85	2.07 to 5.58
Intra batch precision and % Bias (Accuracy) (LLOQ QC)	4.84	13.8	13.8	-2.85	3.60	9.00
Inter batch precision and % Bias (Accuracy) (HQC, MQC and LQC)		2.04 to 7.01			-3.00 to 3.92	
Inter batch precision and % Bias (Accuracy) (LLOQ QC)	9.64		3.25			
5-ISMN		Precision			% Bias	
5-ISMN	RUN 1	Precision RUN 2	RUN 3	RUN 1	% Bias RUN 2	RUN 3
5-ISMN Intra batch precision and % Bias (Accuracy) (HQC, MQC and LQC)				RUN 1 -1.38 to 3.63		RUN 3 -1.07 to 6.65
Intra batch precision and % Bias		RUN 2		-1.38 to	RUN 2	-1.07 to
Intra batch precision and % Bias (Accuracy) (HQC, MQC and LQC) Intra batch precision and %	0.95 to 1.50	RUN 2 0.77 to 1.33	0.91 to 3.07	-1.38 to 3.63	RUN 2 -2.40 to 5.39	-1.07 to 6.65

Calibration Curve Parameters:

Angluto	CC parameters					
Analyte	Slope	intercept	R-Squared			
ISDN	0.0950	-0.0031	0.9992			
2-ISMN	0.0550	-0.0071	0.9991			
5-ISMN	0.0799	-0.0123	0.9994			

Representative Chromatograms:



Day3-P07

% Bias						
RUN 1	RUN 2	RUN 3				
-2.20 to 2.33	-8.85 to 4.85	2.07 to 5.58				
-2.85	3.60	9.00				
-3.00 to 3.92						
3.25						

2-ISMN

Application to **Pharmacokinetics study:**

The study objective was to compare and evaluate a single-dose oral bioavailability of Isosorbide dinitrate 30mg Tablets. This method was successfully employed for the analysis of ISDN, 2-ISMN and 5-ISMN in plasma samples collected during a human pharmacokinetic study from healthy subjects who received single oral dose of Isosorbide Dinitrate 30 mg tablet as either Test or Reference treatment.

Conclusion:

The bioanalytical methodology described in this research work provides a simple, sensitive, cost-effective analytical method for simultaneous estimation of ISDN, 2-ISMN and 5-ISMN in human plasma samples. This method offers advantages over those previously reported methods in terms of Quantification of ISDN and its two isomeric metabolites in single injection method. The method was successfully employed for the analysis of ISDN, 2-ISMN and 5-ISMN in human plasma samples collected during a pharmacokinetic study.

Acknowledgment:

The authors are thankful to the Managing Director, Mr. Ajay Tandon of Veeda Clinical Research (India) for providing the infrastructure facility for carrying out this work.

Reference:

[1] Office of Generic Drugs, Draft Guidance on Isosorbide Dinitrate, 2018.

[2] Determination of Isosorbide Dinitrate and Isosorbide 5-Mononitrate in Human Plasma by LC–MS–MS. Chromatographia, https://doi.org/10.1365/s10337-010-1480-6.

[3] Determination of Isosorbide-5-Mononitrate in Human Plasma. Chromatographia, https://doi.org/10.1365/s10337-009-0954- x.

* Corresponding Author